Биосинтез белка (реализация наследственной информации). Синтез белков в клетке - описание, функции процесса Биосинтез белка его биологическая роль кратко

Картинка 9 из презентации «Биосинтез белка» к урокам биологии на тему «Биосинтез белка»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока биологии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Биосинтез белка.pptx» целиком со всеми картинками в zip-архиве. Размер архива - 1719 КБ.

Скачать презентацию

Биосинтез белка

«Функции белков» - Так происходит прием сигналов из внешней среды и передача информации в клетку.. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Что такое ренатурация? Подведем итоги: 9. Каталитическая. Процесс восстановления структуры белка после денатурации называется ренатурацией. Пименов А.В. Белки являются одним из источников энергии в клетке.

«Белки вещество» - Например: коллаген. Преподаватель биологии: Болдырева Л. А. Известно 20 АК, из которых строятся белки. . Пример: вареное яйцо. Аминокислота – органическое вещество, Нерастворимые белки - фибриллярные. Пищевые белки. . Защитные белки. Структура белка. Используются организмом для движения. Энергетические белки.

«Белки и их функции» - Каталитическая роль. Двигательная функция. Понятие о белках. Гидролиз белков сводится к расщеплению полипептидных связей: Вывод: Из белков построены кровеносные сосуды, сухожилия, волосы. Строение и функции белка. Химические свойства белков. белки участвуют в образовании оболочки клетки, органоидов и мембран клетки.

«Биосинтез белка» - Список литературы. Введение. 4. Содержание. Биосинтез белков в живой клетке. 7. 10. 9. Схема растительной и животной клеток. 5. 6. 1. 8. 2. 3.

«Биосинтез белков» - Трансляция (лат. перенесение, перевод). Транскрипция (лат. переписывание). Проверь себя. Значение белков. Содержание. Энергетика биосинтеза. Роль ферментов. Синтез полипептидной цепи на рибосоме. 5. Какова последовательность нуклеотидов и-РНК, записанной на отрезке ДНК: Т-А-Ц-Г-Г-А-Т-Ц-А-Ц-Г-А А-Т-Г-Ц-Ц-Т-А-Г-Т-Г-Ц-Т А-У-Г-Ц-Г-У-А-Г-У-Г-Ц-У А-У-Г-Ц-Ц-У-А-Г-У-Г-Ц-У.

«Биосинтез белка биология» - Николай Константинович Кольцов (1872-1940). А. Г. Основной функцией рибосом является синтез белков. Центральная догма (основной постулат) молекулярной биологии – матричный синтез. Ц. Антикодон– триплет нуклеотидов на верхушке тРНК. Биосинтез белка. После завершения синтеза иРНК распадается на нуклеотиды.

Всего в теме 8 презентаций

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид. Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

нетранскрибируемая цепь ДНК

транскрибируемая цепь ДНК

транскрипция ДНК

кодоны мРНК

трансляция мРНК

антикодоны тРНК

аминокислоты белка

метионин

На схеме видно, что генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции (такая цепь называется транскрибируемой). Вторая цепь является комплементарной по отношению к транскрибируемой и не участвует в синтезе мРНК.

Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК.

На рибосомах к определенному кодону мРНК с помощью специфического белка присоединяется антикодон соответствующей молекулы аминоацил-тРНК. Такое связывание мРНК и аминоацил-тРНК называется кодонзависимым. На рибосомах аминокислоты соединяются между собой с помощью пептидных связей, а освободившиеся молекулы тРНК уходят на поиски свободных аминокислот.

Рассмотрим подробнее основные этапы биосинтеза белков.

1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называетсясплайсинг.

Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.

3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).

Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.

В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Модификация белков. Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген – основной белковый компонент соединительной ткани.

Реакции модификации белков не являются реакциями матричного типа. Такие биохимические реакции называются ступенчатыми.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).

Генетический код, его основные свойства

В ходе реакций матричного синтеза на основании генетического кода синтезируется полипептид с наследственно обусловленной структурой. Отрезок ДНК, содержащий информацию о структуре определенного полипептида, называется ген.

Однако, ген – это не просто участок ДНК, а единица наследственной информации, носителем которой являются нуклеиновые кислоты. Установлено, что ген имеет сложную структуру.

В большинстве случаев кодирующие участки (экзоны) разделены некодирующими (интронами). В то же время, благодаря альтернативному сплайсингу, деление участка ДНК на кодирующие и некодирующие оказывается условным. Некоторые участки ДНК могут перемещаться относительно друг друга – их называют мобильными генетическими элементами (МГЭ). Многие гены представлены несколькими копиями – тогда один и тот же белок кодируется разными участками ДНК. Еще сложнее закодирована генетическая информация у вирусов. У многих из них обнаружены перекрывающиеся гены: один и тот же участок ДНК может транскрибироваться с разных стартовых точек.

Процесс экспрессии генов обладает гибкостью: одному участку ДНК может соответствовать несколько полипептидов; один полипептид может кодироваться разными участками ДНК. Окончательная модификация белков происходит с помощью ферментов, которые кодируются различными участками ДНК.

Общие свойства генетического кода

Отражение одних объектов с помощью других называется кодированием. Отражение структуры белков в виде триплетов ДНК называется кодом ДНК, или генетическим кодом. Благодаря генетическому коду устанавливается однозначное соответствие между нуклеотидными последовательностями нуклеиновых кислот и аминокислотами, входящими в состав белков. Генетический код обладает следующими основными свойствами:

1. Генетический код триплетен: каждая аминокислота кодируется триплетом нуклеотидов ДНК и соответствующим триплетом иРНК. При этом кодоны ничем не отделены друг от друга (отсутствуют «запятые»).

2. Генетический код является избыточным (вырожденным): почти все аминокислоты могут кодироваться разными кодонами. Только двум аминокислотам соответствует по одному кодону: метионину (АУГ) и триптофану (УГГ). Зато лейцину, серину и аргинину соответствует по 6 разных кодонов.

3. Генетический код является неперекрывающимся: каждая пара нуклеотидов принадлежит только одному кодону (исключения обнаружены у вирусов).

4. Генетический код един для подавляющего большинства биологических систем. Однако имеются и исключения, например, у инфузорий и в митохондриях разных организмов. Поэтому генетический код называют квазиуниверсальным.

Во всех живых клетках белки синтезируются рибосомами. Рибосома представляет собой крупную макромолекулу со сложной асимметричной четвертичной структурой, построенной из рибонуклеиновых кислот (рибосомных РНК) и белков. Для того чтобы синтезировать белок, рибосома должна быть снабжена:

1. Программой, задающей порядок чередования аминокислотных остатков в полипептидной цепи белка.

2. Аминокислотным материалом, из которого надлежит строить белок.

3. Энергией.

Сама рибосома обладает каталитической (энзиматической) функцией, ответственной за образование пептидных связей и, соответственно, полимеризацию аминокислотных остатков в полипептидную цепь белка.

Программа, задающая порядок чередования аминокислотных остатков в полипептидной цепи белка, исходит от дезоксирибонуклеиновой кислоты (ДНК), т. е.Из генома клетки.Отдельные участки двутяжевойДНК,называемые генами, являются матрицами длясинтеза на них однотяжевых цепей РНК. Синтезированные цепи РНК комплиментарны одной из цепей ДНК и, таким образом, точно воспроизводят дезоксирибонуклеотидную последовательность другой цепи ДНК в своей рибонуклеотидной последовательности. Процесс такого копирования гена, осуществляемый ферментом РНК-полимеразой, получил название транскрипции. РНК в течение синтеза и после него, особенно в эукариотических клетках, может подвергаться ряду дополнительных изменений, называемых процессингом, в ходе которых из нее могут быть вырезаны определенные куски нуклеотидной последовательности. Получающаяся РНК поступает далее в рибосомы в качестве программы, определяющую аминокислотную последовательность в синтезируемом белке. Она называется информационной или "мессенджер" РНК (мРНК). Таким образом, именно транскрипция генов и образование мРНК обеспечивают поток информации от ДНК к рибосомам.

Исходным материалом, из которого строится белок, являются аминокислоты. Однако свободные аминокислоты не используются рибосомой, Для того чтобы служить субстратом для рибосомы, аминокислота должна быть активирована с участием сопряженного расщепления АТФ и акцептирована (ковалентно присоединена) специальной молекулой РНК, называемой трансфернои или транспортной РНК (тРНК), с помощью фермента аминоацил-тРНК-синтетезы. Получающиеся аминоацил-тРНК поступают в рибосому в качестве субстрата для синтеза белка. Кроме того, энергия химической связи между аминокислотным остатком и тРНК используется для реакции образования пептидной связи в рибосоме. Таким образом, активация аминокислот и образование аминоацил-тРНК обеспечивают поток, как материала, так и энергии для рибосомного синтеза белка.

Эти три потока (информации, материала и энергии) встречаются в рибосоме. Воспринимая их, рибосома осуществляет перевод, или трансляцию, генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности синтезируемой полипептидной цепи белка. Если представить это в молекулярных терминах, то рибосома последовательно сканирует цепь мРНК (движется вдоль нее) и тоже последовательно выбирает из среды аминоацил-тРНК, в результате чего специфичность аминоацильного остатка выбираемой рибосомой аминоацил-тРНК каждый раз детерминируется специфичностью комбинации нуклеотидов считываемого в данный момент рибосомой отрезка мРНК. Таким образом, возникает проблема генетического кода: какие комбинации нуклеотидов детерминируют, т. е. Кодируют каждую из 20 аминокислот, из которых строятся молекулы белков?

Движение рибосомы вдоль цепи мРНК (или, другими словами, Пропускание цепи мРНК сквозь рибосому) задает строгий временной порядок вхождения в рибосому разных аминоацил-тРНК в соответствии с порядком расположения кодирующих нуклеотидных комбинаций вдоль мРНК. Аминоацильный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи. Деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно, шаг за шагом, строится полипептидная цепь белка (см. схему 1).

Для изучения процессов, протекающих в организме, нужно знать, что происходит на клеточном уровне. А там важнейшую роль играют белковые соединения. Необходимо изучить не только их функции, но и процесс создания. Поэтому важно объяснить кратко и понятно. 9 класс для этого подходит самым лучшим образом. Именно на этом этапе учащиеся владеют достаточным количеством знаний для понимания данной темы.

Белки - что это такое и для чего они нужны

Эти высокомолекулярные соединения играют огромную роль в жизни любого организма. Белки являются полимерами, то есть состоят из множества похожих «кусочков». Их количество может варьироваться от нескольких сотен до тысяч.

В клетке белки выполняют множество функций. Велика их роль и на более высоких уровнях организации: ткани и органы во многом зависят от правильной работы различных белков.

Например, все гормоны имеют белковое происхождение. А ведь именно эти вещества контролируют все процессы в организме.

Гемоглобин - тоже белок, он состоит из четырех цепей, которые в центре соединены атомом железа. Такая структура обеспечивает возможность переносить кислород эритроцитами.

Напомним, что все мембраны имеют в своем составе белки. Они необходимы для переноса веществ сквозь оболочку клеток.

Существует еще множество функций белковых молекул, которые они выполняют четко и беспрекословно. Эти удивительные соединения очень разнообразны не только по своим ролям в клетке, но и по строению.

Где происходит синтез

Рибосома является органеллой, в которой проходит основная часть процесса, называемого "биосинтез белка". 9 класс в разных школах отличается по программе изучения биологии, но многие учителя дают материал по органеллам заблаговременно, до изучения трансляции.

Поэтому учащимся будет нетрудно вспомнить пройденный материал и закрепить его. Следует знать, что на одной органелле одновременно может создаваться только одна полипептидная цепь. Этого мало, чтобы удовлетворить все потребности клетки. Поэтому рибосом очень много, и чаще всего они объединяются с эндоплазматической сетью.

Такая ЭПС называется шероховатой. Выгода такого «сотрудничества» очевидна: белок сразу после синтеза попадает в транспортный канал и может без задержек отправляться в место назначения.

Но если принимать во внимание самое начало, а именно считывание информации с ДНК, то можно сказать, что биосинтез белка в живой клетке начинается еще в ядре. Именно там синтезируется которая содержит генетический код.

Необходимые материалы - аминокислоты, место синтеза - рибосома

Кажется, что сложно объяснить, как протекает биосинтез белка, кратко и понятно, схема процесса и многочисленные рисунки просто необходимы. Они помогут донести всю информацию, а также учащимся удастся легче ее запомнить.

Прежде всего, для синтеза необходим «строительный материал» - аминокислоты. Некоторые из них вырабатываются организмом. Другие же можно получить только с пищей, они называются незаменимыми.

Общее число аминокислот - двадцать, но за счет огромного числа вариантов, в которых можно их располагать в длинной цепочке, молекулы белков очень разнообразны. Эти кислоты похожи между собой по структуре, но отличаются радикалами.

Именно свойства этих частей каждой аминокислоты определяют, в какую структуру «свернется» получившаяся цепочка, будет ли она образовывать четвертичную структуру с другими цепями, и какими свойствами будет обладать получившаяся макромолекула.

Процесс биосинтеза белка не может протекать просто в цитоплазме, для него нужна рибосома. состоит из двух субъединиц - большой и малой. В состоянии покоя они разобщены, но как только начинается синтез, они сразу соединяются и начинают работать.

Такие разные и важные рибонуклеиновые кислоты

Для того чтобы принести аминокислоту к рибосоме, нужна специальная РНК, называемая транспортной. Для сокращения ее обозначают т-РНК. Эта одноцепочечная молекула в виде клеверного листа способна прицепить одну аминокислоту к своему свободному концу и переправить ее к месту синтеза белка.

Еще одна РНК, участвующая в синтезе белка, называется матричной (информационной). Она несет в себе не менее важный компонент синтеза - код, в котором четко прописано, когда какую аминокислоту цеплять к образующейся цепочке белка.

Эта молекула имеет одноцепочечное строение, состоит из нуклеотидов, так же как и ДНК. Существуют некоторые отличия в первичной структуре этих нуклеиновых кислот, о которых вы можете прочитать в сравнительной статье о РНК и ДНК.

Информацию о составе белка м-РНК получает от главного хранителя генетического кода - ДНК. Процесс чтения и синтеза м-РНК называется транскрипцией.

Он происходит в ядре, откуда получившаяся м-РНК отправляется к рибосоме. Сама же ДНК из ядра не выходит, ее задача - только сохранить генетический код и передать его дочерней клетке во время деления.

Сводная таблица главных участников трансляции

Для того чтобы описать биосинтез белка кратко и понятно, таблица просто необходима. В нее мы запишем все компоненты и их роль в этом процессе, который называется трансляцией.

Сам же процесс создания белковой цепочки делится на три этапа. Давайте рассмотрим каждый из них более подробно. После этого вы сможете легко объяснить всем желающим биосинтез белка кратко и понятно.

Инициация - начало процесса

Это начальная стадия трансляции, в которой малая субъединица рибосомы соединяется с самой первой т-РНК. Эта рибонуклеиновая кислота несет на себе аминокислоту - метионин. Трансляция всегда начинается именно с этой аминокислоты, так как стартовым кодоном является АУГ, который и кодирует этот первый мономер в белковой цепи.

Для того чтобы рибосома узнала стартовый кодон и не начала синтез с середины гена, где последовательность АУГ тоже может оказаться, вокруг начального кодона располагается специальная последовательность нуклеотидов. Именно по ним рибосома узнает то место, на которое должна сесть ее малая субъединица.

После образования комплекса с м-РНК, стадия инициации заканчивается. И начинается основной этап трансляции.

Элонгация - середина синтеза

На этом этапе происходит постепенное наращивание белковой цепочки. Продолжительность элонгации зависит от количества аминокислот в белке.

Первым делом к малой субъединице рибосомы присоединяется большая. И начальная т-РНК оказывается в ней целиком. Снаружи остается только метионин. Далее в большую субъединицу заходит вторая т-РНК, несущая другую аминокислоту.

Если второй кодон на м-РНК совпадает с антикодоном на верхушке «клеверного листа», вторая аминокислота присоединяется к первой с помощью пептидной связи.

После этого рибосома передвигается по м-РНК ровно на три нуклеотида (один кодон), первая т-РНК отсоединяет от себя метионин и отделяется от комплекса. На ее месте оказывается вторая т-РНК, на конце которой висит уже две аминокислоты.

Затем в большую субъединицу входит третья т-РНК и процесс повторяется. Он будет происходить до тех пор, пока рибосома не наткнется на кодон в м-РНК, который сигнализирует об окончании трансляции.

Терминация

Этот этап является последним, некоторым он может показаться весьма жестоким. Все молекулы и органеллы, которые так слаженно работали над созданием полипептидной цепочки, останавливаются, как только рибосома наезжает на терминальный кодон.

Он не кодирует ни одну аминокислоту, поэтому какая бы т-РНК ни зашла в большую субъединицу, все они будут отвергнуты из-за несоответствия. Тут в дело вступают факторы терминации, которые отделяют готовый белок от рибосомы.

Сама органелла может либо распасться на две субъединицы, либо продолжить свой путь по м-РНК в поисках нового стартового кодона. На одной м-РНК могут находиться сразу несколько рибосом. Каждая из них - на свой стадии трансляции.Только что созданный белок снабжается маркерами, с помощью которых всем будет понятно его место назначения. И по ЭПС он будет отправлен туда, где необходим.

Чтобы понять роль биосинтеза белка, необходимо изучить, какие функции он может выполнять. Это зависит от последовательности аминокислот в цепочке. Именно их свойства определяют вторичную, третичную, а иногда и четвертичную (если она существует) и его роль в клетке. Более подробно о функциях белковых молекул можно прочитать в статье по этой теме.

Как узнать больше о трансляции

В этой статье описан биосинтез белка в живой клетке. Конечно, если изучать предмет глубже, на объяснение процесса во всех подробностях уйдет немало страниц. Но вышеизложенного материала должно хватить для общего представления.Очень полезным для понимания могут оказаться видеоматериалы, в которых ученые смоделировали все этапы трансляции. Некоторые из них переведены на русский язык и могут послужить отличным пособием для учащихся или просто познавательным видео.

Для того чтобы разбираться в теме лучше, следует прочитать и другие статьи на близкие темы. Например, про или про функции белков.