Презентация по химии на тему коррозия металлов. Коррозия металлов




Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»). Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.


Химическая коррозия t Fe+ 3 SO O 2 Fe 2 (SO 4) t Fe + 3 Cl 2 2 FeCl t Zn + O 2 2 ZnO Коррозия происходит в непроводящей ток среде. Например, взаимодействие металла с сухими газами или жидкостями - неэлектролитами (бензином, керосином и т.д.)


Многие металлы (например, алюминий) при коррозии покрываются плотной, оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.


Электрохимическая коррозия Коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Металлы не однородны и содержат различные примеси. При контакте их с электролитами одни участки поверхности выполняют роль- анодов, другие- катодов.


Рассмотрим разрушение железного образца в присутствии примеси олова. 1. В кислой среде: На железе, как более активном металле, при соприкосновении с электролитом происходят процессы окисления (растворения) металла и перехода его катионов в электролит: Fe 0 – 2 e = Fe 2+ (анод) На катоде (олово) происходит восстановление катионов водорода: 2H + + 2e H 2 0 Ржавчина не образуется, т.к. ионы железа (Fe 2+) переходят в раствор


2. В щелочной или нейтральной среде: Fe 0 – 2e Fe 2+ (на аноде) O H 2 O + 4e 4OH – (на катоде) ________________________________________________________ Fe OH - Fe(OH) 2 4 Fe (OH) 2 + O 2 + 2H 2 O = 4 Fe (OH) 3 (Ржавчина)



















1. Шлифование поверхностей изделия, чтобы на них не задерживалась влага. 2. Применение легированных сплавов, содержащих специальные добавки: хром, никель, которые при высокой температуре на поверхности металла образуют устойчивый оксидный слой(например Cr 2 O 3).Общеизвестные легированные стали – «нержавейки», из которых изготовляют предметы домашнего обихода(ножи, вилки, ложки), детали машин, инструменты.


3. Нанесение защитных покрытий Неметаллические – неокисляющиеся масла, специальные лаки, краски, эмали. Правда, они недолговечны, но зато дешевы. Химические – искусственно создаваемые поверхностные плёнки: оксидные, нитридные, силицидные, полимерные и др. Например, все стрелковое оружие и детали многих точных приборов подвергают воронению – это процесс получения тончайшей плёнки оксидов железа на поверхности стального изделия.


Металлические – это покрытие другими металлами, на поверхности которых под действием окислителей образуются устойчивые защитные плёнки. Нанесение хрома- хромирование, никеля - никелирование, цинка - цинкование и т.д. Покрытием может служить и пассивный в химическом отношении металл – золото, серебро, медь.


4. Электрохимические методы защиты 4. Электрохимические методы защиты *Протекторная (анодная) – к защищаемой металлической конструкции присоединяют кусочек более активного металла (протектора), который служит анодом и разрушается в присутствии электролита. В качестве протектора при защите корпусов судов, трубопроводов, кабелей и др. стальных изделий используются магний, алюминий, цинк.. *Катодная – металлоконструкцию подсоединяют к катоду внешнего источника тока, что исключает возможность её анодного разрушения.


Введение веществ - ингибиторов, замедляющих коррозию. Примеры использования современных ингибиторов: соляная кислота при перевозке и хранении прекрасно «укрощается» производными бутиламина, а серная кислота –азотной кислотой; летучий диэтиламин впрыскивают в различные ёмкости. Ингибиторы действуют только на металл, делая его пассивным по отношению к среде. Науке известно более 5 тыс. ингибиторов коррозии. Удаление растворённого в воде кислорода (деаэрация). Этот процесс используют при подготовке воды, поступающей в котельные установки. 5. Специальная обработка электролита или другой среды, в которой находится защитная металлическая конструкция



У металлов есть враг, который приводит к огромным
безвозвратным потерям металлов, ежегодно полностью
разрушается около 10% производимого железа. По
данным Института физической химии РАН, каждая
шестая домна в России работает впустую – весь
выплавляемый металл превращается в ржавчину.
Этот враг - коррозия.

Проблема защиты металлов от коррозии
возникла почти в самом начале их
использования. Люди пытались защитить
металлы от атмосферного воздействия с
помощью жира, масел, а позднее и
покрытием другими металлами и, прежде
всего, легкоплавким оловом (лужением). В
трудах древнегреческого историка Геродота
(V в. до н.э.) уже имеется упоминание о
применении олова для защиты железа от
коррозии.

В III до нашей эры на острове Родос был построен
маяк в виде огромной статуи Гелиоса.
Колосс Родосский считался одним из семи чудес света,
однако просуществовал всего 66 лет и рухнул во время
землетрясения. У Колосса Родосского бронзовая
оболочка была
смонтирована на
железном каркасе.
Под действием влажного,
насыщенного солями
средиземноморского воздуха
железный каркас разрушился.

В 20 годы ХХ в. по заказу одного миллионера
была построена роскошная яхта “Зов моря”.
Еще до выхода в открытое море яхта полностью
вышла из строя. Причиной была контактная
коррозия. Днище яхты было обшито медноникелевым сплавом, а рама руля, киль и другие
детали изготовлены из стали. Когда яхта была
спущена на воду. Возник гигантский
гальванический элемент, состоящий из катодаднища, стального анода и электролита – морской
воды. В результате судно затонуло, ни сделав ни
одного рейса.

Что является символом
Парижа? –Эйфелева
башня. Она неизлечима
больна, ржавеет и
разрушается, и только
постоянная
химиотерапия помогает
бороться с этим
смертельным недугом:
её красили 18 раз, отчего
её масса 9000 т
каждыйраз
увеличивается на 70 т.

Коррозия – разрушение металлов и
сплавов под воздействием окружающей
среды. Слово коррозия происходит от
латинского corrodere, что означает
разъедать.

Виды коррозии

Химическая коррозия

Химическая коррозия –
это взаимодействие
металлов с сухими
газами и жидкостями –
неэлектролитами.
Такому виду коррозии
подвергаются турбины,
арматура печей и детали
двигателей внутреннего
сгорания.

Электрохимическая коррозия

Электрохимическая
коррозия – это все
случаи коррозии в
присутствии воды и
жидкостей –
электролитов.

Сущность коррозии.

Коррозия состоит из
двух процессов:
химического – это
отдача электронов и
электрического – это
перенос электронов.

Закономерности коррозии:

1. Если соединены
два разных металла,
то коррозии
подвергается только
более активный, и
пока он полностью
не разрушится, менее
активный защищён.

Закономерности коррозии:

2. Скорость коррозии
тем больше, чем
дальше друг от друга
в ряду напряжений
расположены
соединённые
металлы.

Химизм коррозии.

Способы защиты от коррозии.

Одним из наиболее распространенных
способов защиты металлов от коррозии
является нанесение на их поверхность
защитных пленок: лака, краски, эмали.

Широко распространенным способом защиты
металлов от коррозии является покрытие их
слоем других металлов. Покрывающие
металлы сами корродируют с малой
скоростью, так как покрываются плотной
оксидной пленкой. Производят покрытие
цинком, никелем, хромом и др.

Покрытие другими металлами.

В повседневной жизни человек чаще всего
встречается с покрытиями железа цинком и
оловом. Листовое железо, покрытое
цинком, называют оцинкованным железом,
а покрытое оловом – белой жестью. Первое
в больших количествах идет на кровли
домов, а из второго изготавливают
консервные банки.

Способы защиты от коррозии.

Создание сплавов с
антикоррозионными
свойствами. Для этого
в основной металл
добавляют до 12%
хрома, никеля,
кобальта или меди.

Способы защиты от коррозии.

Изменение состава
среды. Для
замедления коррозии
вводятся
ингибиторы. Это
вещества, которые
замедляют скорость
реакции.

Способы защиты от коррозии.

Применение ингибиторов – один из эффективных
способов борьбы с коррозией металлов в различных
агрессивных средах (в атмосферных, в морской воде, в
охлаждающих жидкостях и солевых растворах, в
окислительных условиях и т.д.). Ингибиторы – это
вещества, способные в малых количествах замедлять
протекание химических процессов или останавливать их.
Название ингибитор происходит от лат. inhibere, что
означает сдерживать, останавливать. Известно, что
дамасские мастера для снятия окалины и ржавчины
пользовались растворами серной кислоты с добавками
пивных дрожжей, муки, крахмала. Эти примеси были
одними из первых ингибиторов. Они не позволяли кислоте
действовать на оружейный металл, в результате чего
растворялись лишь окалина и ржавчина.

Электрозащита.

1. Протекторная защита.
К основной конструкции
прикрепляются
заклёпки или пластины
из более активного
металла, которые и
подвергаются
разрушению. Такую
защиту используют в
подводных и подземных
сооружениях.

Электрозащита.

2. Пропускание
электрического тока
в направлении,
противоположном
тому, который
возникает в процессе
коррозии.

Причины коррозии металлов Причины коррозии металлов. 1. Наличие во внешней среде агрессивных компонентов (кислорода, воды, оксидов серы, оксидов углерода, водных растворов солей и кислот). 3. Прохождение во внешней среде физико-химических процессов (растворения, электролиза). 4. Адсорбция поверхностно активных веществ. 5. Различная активность металлов в ряду напряжения. 6. Воздействие биологических объектов. 1. Наличие примесей в металлах, их неоднородность.


Классификация коррозийных процессов. Коррозия металлов По виду коррозионной среды По процессам По характеру разрушений - газовая - атмосферная - почвенная - жидкостная (кислотная, солевая, щелочная) щелочная) - химическая - электро- химическая - равномерная - неравномерная - неравномерная (избирательная, (избирательная, местная) местная)


Химическая коррозия металлов. Взаимодействие металлов с сухими газами и жидкостями – неэлектролитами вызывает химическую коррозию. Такому виду коррозии подвергаются турбины, арматура печей, детали двигателей внутреннего сгорания. На практике этот вид коррозии редок. Сущность коррозии: Meº - nē Me+n Переход атома металла в ионное состояние.


При химической коррозии идет окисление металла без возникновения цепи электрического тока: 3Fe + 2O 2 = Fe 3 O 4 (FeOFe 2 O 3) Оксидная пленка железа очень рыхлая и не прилегает плотно к поверхности металла, поэтому кислород проникает все дальше и дальше, коррозия идет до полного разрушения предмета. 4Al + 3O 2 = 2Al 2 O 3 Для поверхности алюминия этот процесс благоприятен, т.к. оксидная пленка плотно прилегает к поверхности металла и нет дальнейшего допуска кислорода к металлу. Химическая коррозия.


Электрохимическая коррозия. Электрохимическая коррозия Электрохимическая коррозия – это все случаи коррозии, идущие в присутствии воды и жидкостей- электролитов. 1. Процесс происходит при соприкосновении двух металлов или на поверхности металла, содержащего примеси. 2. Более активный металл(анод) разрушается. 3. Скорость коррозии тем больше, чем сильнее отличаются металлы (чем дальше друг от друга расположены в ряду напряжений).


Условия, способствующие электрохимической коррозии. 1. Чем дальше друг от друга в ряду активности расположены контактирующие металлы, тем быстрее и активнее идет коррозия. 2. Ускоряют коррозию: примеси, неровности поверхности и трещины, повышение температуры. 3. Действие агрессивной внешней среды (морская вода, грунтовые воды, среда электролита). 4. Действие микроорганизмов (грибы, бактерии, лишайники).




Негативные последствия коррозии. 1. Вызывает серьезные экологические последствия при утечке нефти, газа, других химических продуктов. 2. Недопустима во многих отраслях промышленности: авиационной, химической, нефтеперерабатывающей, атомного машиностроения. 3. Отрицательно влияет на жизнь и здоровье человека.






Основные методы защиты металлов от коррозии. Приготовление сплавов стойких к коррозии: Замена металлических предметов на изделия из нержавеющей стали и других сплавов, коррозийно- стойких. Изменение состава среды Добавление ингибиторов Деаэрация – удаление растворенного воздуха из воды




Обобщения, выводы. 1. Коррозия – окислительно – восстановительный процесс. 2. Коррозия бывает химической и электрохимической. 3. В случае электрохимической коррозии всегда образуется электрический ток. 4. Более активный металл выступает в роли анода; менее активный – катода.


1. Все металлы главных подгрупп I и II ПСХЭ Д. И. Менделеева имеют малую коррозионную стойкость. 2. Металлы побочной подгруппы II группы, III главной подгруппы – образуют защитную оксидную плёнку. 3. Металлы IV группы – стойки к коррозии. 4. Металлы V, VI, VII, VIII групп побочных подгрупп способны к пассивации. 5. Наиболее устойчивы металлы VIII группы побочной подгруппы. Активность металлов по группам ПСХЭ.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

У металлов есть враг, который приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. Этот враг - коррозия.

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (V в. до н.э.) уже имеется упоминание о применении олова для защиты железа от коррозии.

В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения. У Колосса Родосского бронзовая оболочка была смонтирована на железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился.

В 20 годы ХХ в. по заказу одного миллионера была построена роскошная яхта “Зов моря”. Еще до выхода в открытое море яхта полностью вышла из строя. Причиной была контактная коррозия. Днище яхты было обшито медно-никелевым сплавом, а рама руля, киль и другие детали изготовлены из стали. Когда яхта была спущена на воду. Возник гигантский гальванический элемент, состоящий из катода- днища, стального анода и электролита – морской воды. В результате судно затонуло, ни сделав ни одного рейса.

Что является символом Парижа? –Эйфелева башня. Она неизлечима больна, ржавеет и разрушается, и только постоянная химиотерапия помогает бороться с этим смертельным недугом: её красили 18 раз, отчего её масса 9000 т каждыйраз увеличивается на 70 т.

Коррозия – разрушение металлов и сплавов под воздействием окружающей среды. Слово коррозия происходит от латинского corrodere , что означает разъедать.

Виды коррозии

Химическая коррозия Химическая коррозия – это взаимодействие металлов с сухими газами и жидкостями – неэлектролитами. Такому виду коррозии подвергаются турбины, арматура печей и детали двигателей внутреннего сгорания.

Электрохимическая коррозия Электрохимическая коррозия – это все случаи коррозии в присутствии воды и жидкостей – электролитов.

Сущность коррозии. Коррозия состоит из двух процессов: химического – это отдача электронов и электрического – это перенос электронов.

Закономерности коррозии: 1. Если соединены два разных металла, то коррозии подвергается только более активный, и пока он полностью не разрушится, менее активный защищён.

Закономерности коррозии: 2. Скорость коррозии тем больше, чем дальше друг от друга в ряду напряжений расположены соединённые металлы.

Химизм коррозии.

Способы защиты от коррозии. Одним из наиболее распространенных способов защиты металлов от коррозии является нанесение на их поверхность защитных пленок: лака, краски, эмали.

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Производят покрытие цинком, никелем, хромом и др.

Покрытие другими металлами.

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки.

Способы защиты от коррозии. Создание сплавов с антикоррозионными свойствами. Для этого в основной металл добавляют до 12% хрома, никеля, кобальта или меди.

Способы защиты от коррозии. Изменение состава среды. Для замедления коррозии вводятся ингибиторы. Это вещества, которые замедляют скорость реакции.

Способы защиты от коррозии. Применение ингибиторов – один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere , что означает сдерживать, останавливать. Известно, что дамасские мастера для снятия окалины и ржавчины пользовались растворами серной кислоты с добавками пивных дрожжей, муки, крахмала. Эти примеси были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате чего растворялись лишь окалина и ржавчина.

Электрозащита. 1. Протекторная защита. К основной конструкции прикрепляются заклёпки или пластины из более активного металла, которые и подвергаются разрушению. Такую защиту используют в подводных и подземных сооружениях.

Электрозащита. 2. Пропускание электрического тока в направлении, противоположном тому, который возникает в процессе коррозии.

Спасибо за внимание!


1 из 38

Презентация - Коррозия металлов и способы защиты от коррозии

Текст этой презентации

Урок химии по теме “Коррозия металлов и способы защиты от коррозии"
Подготовила учитель химии СШ РГКП «Республиканский центр реабилитации для детей и подростков» Лепесбаева Сандугаш Кайратовна

Цели урока:
сформировать представление учащихся о механизме коррозийных процессов, об их последствиях и способах защиты от коррозии; развивать умение работать с опорным конспектом, наблюдать, делать выводы; воспитывать эмоциональное отношение к изучаемому явлению.

Чугун
Сплав железа с углеродом (2-4%)
Сталь
Сплав железа с углеродом (меньше 2%)
Применяется в фасонном литье
При добавлении легирующих элементов улучшает качества

В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения. У Колосса Родосского бронзовая оболочка была смонтирована На железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился.

Что является символом Парижа? – Эйфелева башня. Она неизлечима больна, ржавеет и разрушается, и только постоянная химиотерапия помогает бороться с этим смертельным недугом: её красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т.

Коррозия – рыжая крыса, Грызёт металлический лом. В. Шефнер
Ежегодно в мире «теряется» до ¼ произведённого железа…

А.Н.Несмеянов
Знать – значит победить!

Путешествие по царству «Рыжего дъявола»
ст. Информационная
ст. Экспериментальная
ст. Практическая

разрушение металлов и сплавов под воздействием окружающей среды.
Коррозия

Виды коррозии
По характеру разрушения сплошная (общая): равномерная, неравномерная локальная(местная): точечная, пятнами, язвами, подповерхностная, сквозная и др.

Виды коррозии
сплошная точечная

Язвенная межкристаллитная

Химическая коррозия
- металл разрушается в результате его химического взаимодействия с агрессивной средой (сухими газами, жидкостями-неэлектролитами).
Образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом: 8ē 3Fe0 + 2O20 → (Fe+2Fe2+3)O4-2
Видео- фрагмент
Лабораторный опыт – накаливание медной проволоки

Электрохимическая коррозия
- в среде электролита возникает электрический ток при контакте двух металлов (или на поверхности одного металла, имеющего неоднородную структуру); - коррозия напоминает работу гальванического элемента: происходит перенос электронов от одного участка металла к другому (от металла к включению).
Видео- фрагмент

Образующиеся на аноде ионы Fe2+ окисляются до Fe3+ : 4Fe2+ (водн.) + O2 (г.) + (2n + 4)H2O (ж.) = 2Fe2O3 nH2O (тв.) + 8H+ (водн.)
Коррозия металла на влажном воздухе

Железо слабо прокорродировало в воде, в чистой воде коррозия идет медленнее, т. к. вода слабый электролит.
Сравним результаты опытов № 2 и № 5

Добавка к воде NaCl усиливает коррозию Fe. добавка к раствору NaCl – NaOH, как видно из опыта, наоборот ослабила коррозию, ржавчины получилось мало.
Сравним результаты опытов № 1 и № 2

Т. о. скорость коррозии данного металла зависит от состава омывающей среды. Одни составные части омывающий металл среды, в частности Cl- - ионы усиливают коррозию металлов, другие составные части могут ослаблять коррозию. Коррозия Fe ослабевает в присутствии OH- - ионов.

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с цинком, а в другом нет. В пробирке № 2 осадок бурого цвета – это ржавчина, а в пробирке № 4 осадок – белого цвета – это Zn(OH)2 Вывод: В опыте № 4 корродировало не Fe, а Zn , т. к. железо почти не корродирует, если оно соприкасается с цинком.
Сравним результаты опытов № 2 и № 4

Окисляется Zn, как более активный металл
А (-)
отщепляющиеся от его атомов
перемещаются на поверхность Fe и восстанавливают
К (+) Fe

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с медью, а в другом нет. В обеих пробирках произошла коррозия и появился бурый осадок ржавчины. В пробирке №2 ржавчины получилось меньше, чем в пробирке №3. Вывод: таким образом, коррозия и ржавление железа сильно усиливается, когда оно соприкасается с медью.
Сравним результаты опытов № 2 и № 3

А (-)
К (+) Cu
Реакция растворенного в воде кислорода с железом приводит к образованию бурой ржавчины.

Коррозия металла резко усиливается, если он соприкасается с каким-либо другим, менее активным металлом, т. е. расположенным в электрохимическом ряду напряжений металлов правее его. Но коррозия замедляется, если металл соприкасается с другим металлом, расположенным левее в электрохимическом ряду напряжений металлов, т. е. более активным.

Защита от коррозии
- Изоляция металла от среды - - Изменение среды

Барьерная защита
- механическая изоляция поверхности при использовании поверхностных защитных покрытий: неметаллических (лаки, краски, смазки, эмали, гуммирование (резина), полимеры); металлических (Zn, Sn, Al, Cr, Ni, Ag, Au и др.); химических (пассивирование концентрированной азотной кислотой, оксодирование, науглероживание и др.)


Барьерная защита

Какое поверхностное защитное покрытие использовалось в данном случае? К какой группе поверхностных защитных покрытий оно относится?
Видео- фрагмент
Барьерная защита

Изменение состава металла (сплава)
Протекторная защита - добавление в материал покрытия порошковых металлов, создающих с металлом донорские электронные пары; создание контакта с более активным металлом (для стали - цинк, магний, алюминий).
Под действием агрессивной среды постепенно растворяется порошок добавки, а основной материал коррозии не подвергается.

К основной конструкции прикрепляются заклёпки или пластины из более активного металла, которые и подвергаются разрушению. Такую защиту используют в подводных и подземных сооружениях.

Пропускание электрического тока в направлении, противоположном тому, который возникает в процессе коррозии.
Изменение состава металла (сплава)
Электрозащита

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки.
Изменение состава металла (сплава)
Видео- фрагмент

Введение в металл легирующих добавок: Cr, Ni, Ti, Mn, Mo, V, W и др.
Изменение состава металла (сплава)
Легирование

Изменение среды
Ингибирование
Введение веществ, замедляющих коррозию (ингибиторов): - для кислотной коррозии: азотсодержащие органические основания, альдегиды, белки, серосодержащие органические вещества; - в нейтральной среде: растворимые фосфаты (Na3PO4), дихроматы (K2Cr2O7), сода (Na2CO3), силикаты (Na2SiO3); - при атмосферной коррозии: амины, нитраты и карбонаты аминов, сложные эфиры карбоновых кислот.

В какой пробирке гвоздь не заржавел и почему?
Изменение среды

Изменение среды
Деаэрация - удаление веществ, вызывающих коррозию: нагревание воды; пропускание воды через железные стружки; химическое удаление кислорода (например, 2Na2SO3 + O2 → 2Na2SO4).

Подумай и объясни (домашнее задание)
1. В раствор хлороводородной (соляной) кислоты поместили пластинку из Zn и пластинку из Zn, частично покрытую Cu. В каком случае процесс коррозии происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
2. Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов.

1. На уроке я работал 2. Своей работой на уроке я 3.Урок для меня показался 4. Мое настроение 6. Материал урока мне был активно / пассивно доволен / не доволен коротким / длинным стало лучше / стало хуже понятен / не понятен полезен / бесполезен интересен / скучен
Рефлексия

Код для вставки видеоплеера презентации на свой сайт: